

Termoquímica (2025-2017)

Problemas resueltos

(Oviedo. 2024-2025. Junio/ 3A)

En la reacción de combustión del acetonitrilo, CH_3CN , se generan, únicamente, CO_2 , H_2O y N_2 . A 298,15 K, la entalpía estándar de reacción, Δ_rH° , correspondiente a la combustión, es -302,4 kcal·mol $^{-1}$. Calcule la energía de Gibbs estándar de reacción, Δ_rG° , y la entropía estándar de reacción, Δ_rS° , ambas a 298,15 K, correspondientes a la combustión del acetonitrilo.

DATOS:

	$\Delta_{\mathrm{f}}G^{\scriptscriptstyle \oplus}(298,15\mathrm{K})/(\mathrm{kcalmol^{\scriptscriptstyle -1}})$
$\mathrm{CO}_2(\mathrm{g})$	-94,26
$H_2O(l)$	-56,69
$\mathrm{CH_3CN}(l)$	24,00

Solución:

Importante tener en cuenta que *los datos se dan por mol* y, en consecuencia, deberemos de dar la ecuación *ajustada a la combustión de 1 mol de acetonitrilo.*

$$CH_{3} - CN_{(I)} + \frac{11}{4}O_{2(g)} \rightarrow 2CO_{2(g)} + \frac{3}{2}H_{2}O_{(I)} + \frac{1}{2}N_{2(g)}$$

$$\Delta G_{R}^{0} = \left(2\Delta G_{(CO_{2})}^{0} + \frac{3}{2}\Delta G_{(H_{2}O)}^{0} \frac{1}{2}\Delta G_{(N_{2})}^{0}\right) - \left(\Delta G_{(Acet)}^{0} + \frac{11}{4}\Delta G_{(O_{2})}^{0}\right)$$

$$+ 2O_{R}^{0} - \left(2(-24.20) - \frac{3}{2}(-22.20) - 2\right) kcal_{R} - (-24.20) kcal_{R} - (-24.2$$

$$\Delta G_{R}^{0} = \left(2\left(-94,26\right) + \frac{3}{2}\left(-56,69\right) + 0\right) \frac{\text{kcal}}{\text{mol}} - \left(24,00+0\right) \frac{\text{kcal}}{\text{mol}} = 297,6 \frac{\text{kcal}}{\text{mol}}$$

$$\Delta G^{0} = \Delta H^{0} - T\Delta S^{0}; \ \Delta S^{0} = \frac{\Delta H^{0} - \Delta G^{0}}{T} = \frac{\left(-302, 4\right) - \left(-297, 6\right) \frac{kcal}{mol}}{298, 25 \text{ K}} = -0,0161 \frac{kcal}{mol. \text{ K}}$$

(Oviedo. 2024-2025. Julio/ 3A)

Obtenga la variación de energía interna, ΔU , de un gas que:

- a) Absorbe 20 J en forma de calor, Q, y se expande realizando un trabajo, W, de 12 J.
- b) Desprende 30 J en forma de calor, Q, y se comprime porque se realiza un trabajo, W, sobre él de 52 J.

Solución:

Por convenio *el calor tiene signo positivo cuando es absorbido por el sistema* (su energía interna aumenta) *y negativo si es cedido por el sistema* (su energía interna disminuye) •

Por convenio, el trabajo tiene signo positivo cuando es realizado contra el sistema (por ejemplo cuando se comprime un gas), ya que su energía interna aumenta; y negativo si es realizado por el sistema (por ejemplo cuando un gas se expande), ya que su energía interna disminuye. Aplicando el Principio de Conservación de la Energía:

$$\Delta U = Q + W$$

a)
$$\Delta U = Q + W = 20 J + (-12)J = 8 J$$

En ambos casos la energía interna aumenta

b)
$$\Delta U = Q + W = -30 J + 52 J = 22 J$$